1	Fine granules showing sustained drug release prepared by
2	high-shear melt granulation using triglycerin full behenate and
3	milled microcrystalline cellulose
4	
5	Hajime Aoki ^a , Yasunori Iwao ^a , Takeaki Uchimoto ^a , Shuji Noguchi ^a , Ryusuke
6	Kajihara ^a , Kana Takahashi ^a , Masayuki Ishida ^a , Yasuko Terada ^b , Yoshio Suzuki ^b , and
7	Shigeru Itai ^{<i>a</i>,*}
8	
9	^a Department of Pharmaceutical Engineering, School of Pharmaceutical Sciences,
10	University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
11	^b Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-gun, Hyogo 679-5198,
12	Japan
13	
14	
15	*Address correspondence to: Professor Shigeru Itai, Ph.D.
16	Department of Pharmaceutical Engineering, School of Pharmaceutical Sciences,
17	University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
18	Tel.: +81 54 264 5614; Fax: +81 54 264 5615,
19	E-mail: <u>s-itai@u-shizuoka-ken.ac.jp</u>
20	

21 Abstract

22	This study aimed to prepare fine granules with a diameter less than 200 μ m and
23	sustained drug release properties by melt granulation. Triglycerin full behenate
24	(TR-FB) was examined as a new meltable binder (MB) by comparison of its
25	properties with those of glycerin monostearate (GM), a widely used as MB. The
26	effect of milling microcrystalline cellulose (MCC), an excipient for melt granulation,
27	on the granule properties was also investigated. TR-FB was more stable during
28	heating and storage than GM, and produced smaller granules with narrower particle
29	size distribution, larger yield in the 106–200 μ m range, uniform roundness and better
30	sustained drug release profile than those prepared with GM. Granules prepared with
31	milled MCC had almost the same physicochemical properties as those produced with
32	intact MCC. However, milled MCC produced granules with a more rigid structure
33	and smaller void space than intact MCC. Consequently, the granules produced with
34	milled MCC showed better sustained drug release behavior than those prepared with
35	intact MCC. We successfully prepared fine granules with sustained drug release
36	properties and diameter of less than 200 μ m using TR-FB and milled MCC.
37	

38	Keywords: High-shear melt granulation; computed tomography; synchrotron X-ray
39	radiation; milling process; internal structure; triglycerin full behenate
40	
41	Abbreviations: APAP, Acetaminophen; BRH, bromhexine hydrochloride; DSC,
42	differential scanning calorimetry; GM, glycerin monostearate; IS, impeller speeds;
43	MB, meltable binder; MCC, microcrystalline cellulose; PXRD, powder X-ray
44	diffraction; SEM, scanning electron microscopy; TR-FB, triglycerin full behenate;
45	X-ray CT, X-ray computed tomography
46	
47	

48 **1. Introduction**

49	Melt granulation is a granulation method that uses a material with a low
50	melting point as a meltable binder (MB). The granules are formed by agitation or
51	fluidization, and cooling conditions, such as ambient temperature, cause the MB to
52	congeal to give dried granules. This simple process is one advantage melt granulation.
53	In addition, because this method is solvent-free, it does not require a drying step or
54	toxic solvent, so melt granulation is considered an economical and environmentally
55	friendly process (ICH guideline, 1998) that can be applied to water-sensitive drugs.
56	Furthermore, melt granulation can easily provide granules with sustained drug
57	release by using hydrophobic or water-insoluble MBs (Thomsen et al., 1994,
58	Hamdani et al., 2002, Ochoa et al., 2011). To date, numerous functional granules
59	have been prepared by melt granulation; for example, granules with immediate drug
60	release (Perissutti et al., 2003), improved drug solubility (Shah et al., 2013),
61	enhanced stability of a moisture-sensitive drug (Kowalski et al., 2009), and
62	gastroretentivity (Hamdani at al., 2006). Recently, we successfully prepared granules
63	by melt granulation that exhibited pH-dependent drug release (Shiino et al., 2012).
64	Besides their functionality, fine granules with a particle diameter of less than
65	200 μ m are desired to improve their taste and texture (Shah, Ket al., 1994). In

66	particular, fine granules that undergo sustained drug release have attracted
67	considerable attention to produce orally disintegrating tablets. However, granules
68	with sustained release properties and diameter of less than 200 μ m prepared by melt
69	granulation have not been reported. Schaefer proposed that the smaller the
70	pharmaceutical excipients used, the smaller the granules obtained (Schaefer et al.,
71	1997, Schaefer et al 2004). They used a MB with a mean particle diameter of 40 μm
72	that gave granules with a diameter of approximately 500 μ m. This suggests that to
73	prepare fine granules with sustained drug release, hydrophobic or water-insoluble
74	MBs and excipients with a particle size of less than 40 μ m should be used. Operating
75	conditions should also be improved to minimize granule size.
76	In the present study, we focus on triglycerin full behenate (TR-FB), which is
77	typically used as a food additive, as a new MB. From a structural perspective, TR-FB
78	has a long carbonyl chain and behenic acid, indicating that it can endow granules
79	with better sustained release properties. In addition, the mean particle diameter of
80	TR-FB is about 4 μ m because it is milled by a jet mill (Kamiryo et al., 2002). The
81	maximum acceptable daily intake of TR-FB is 25 mg/kg body weight/day, so it has
82	similar safety to sucrose fatty acid ester, which is often used as a pharmaceutical

83	excipient (FAO/WHO, 1989). Therefore, TR-FB might be suitable for preparing
84	sustained-release fine granules.
85	We also investigated microcrystalline cellulose (MCC) as a pharmaceutical
86	excipient. In general, lactose, starch and calcium hydrogen phosphate have been used
87	as excipients for melt granulation; however, because these excipients are hydrophilic
88	or have large particle size even after milling, they are not considered suitable
89	excipients to prepare fine granules. In contrast, MCC is insoluble in water, easily
90	downsized by milling and has recently been used in melt granulation (Kukec et al.,
91	2012), indicating that it may be a suitable excipient. However, how downsized MCC
92	affects the physicochemical properties of fine granules prepared by melt granulation
93	has not been examined.
94	With the aim of preparing fine granules with sustained drug release, our two
95	main objectives were as follows: the first was to investigate whether TR-FB acts as
96	an MB by comparison with glycerin monostearate (GM), which is commonly used as
97	a hydrophobic MB, and the second was to determine the effects of milling MCC on
98	melt granulation by comparison of the granules prepared with intact and milled MCC.
99	Differential scanning calorimetry (DSC) and powder X- ray diffraction (PXRD) were
100	performed to determine the stability of TR-FB and GM after heat treatment. Next,

101	the physicochemical properties, including particle size distribution, roundness and
102	drug release profile, of granules prepared with either GM or TR-FB were examined.
103	The particle size distribution, roundness, morphology, internal structure, porosity and
104	drug release profile of granules prepared with either intact MCC or MCC milled at
105	different impeller speeds (IS) were then studied.
106	

108 **2. Materials and methods**

109 **2.1. Materials**

110	Acetaminophen (APAP) and bromhexine hydrochloride (BRH), as model
111	drugs, were kindly provided by Iwaki Pharmaceutical Co., Ltd. (Shizuoka, Japan)
112	and purchased from Shiratori Pharmaceutics Inc. (Chiba, Japan), respectively. MCC
113	PH-102 was kindly provided by Asahi Kasei Chemicals Co., Ltd. (Tokyo, Japan).
114	GM was purchased from Taiyo Chemical Industry Co., Ltd. (Tokyo, Japan). TR-FB
115	was kindly provided by Riken Vitamin Co., Ltd. (Tokyo, Japan). Talc was purchased
116	from Gotoku Chemical Co., Ltd. (Tokyo, Japan).
117	
118	2.2. DSC
119	Melting points of the MBs were determined by DSC (EXSTAR DSC 7020,
120	SII Nano Technology Inc, Chiba, Japan). Samples (about 10 mg) were sealed in a
121	40-mL aluminum pan. The samples were analyzed during heating from 25 to 200 $^{\circ}$ C
122	(first run), cooling to 25 °C, and reheating from 25 to 200 °C (second run) at a
123	heating rate of 5 °C/min under a nitrogen atmosphere (40 mL/min).
124	

125 2.3. PXRD

126	The MBs were analyzed by PXRD (Rigaku Rotaflex RU-200B, Rigaku
127	Corp, Tokyo, Japan) under the following operating conditions: target: Cu; voltage: 30
128	kV, current: 15 mA; scanning speed: 4 °/min; 2θ range: 3–40°.
129	
130	2.4. Storage stability of MB particles
131	GM and TR-FB particles were prepared by the spray congealing method
132	reported in our previous paper (Nitanai et al., 2012) and then stored at 24 $^{\circ}C/25\%$
133	RH for 6 weeks. The surface morphology of MB particles before and after storage
134	was observed by scanning electron microscopy (SEM; JSM-5310LV, JEOL Ltd.,
135	Tokyo, Japan). The samples were placed on double-sided adhesive tape and sputter
136	coated with platinum under vacuum prior to imaging.
137	
138	2.5. High-shear melt granulation
139	2.5.1. Granules containing APAP
140	Size reduction of APAP and MCC was carried out using a sample mill
141	(TI-300, Cosmic Mechanical Technology Co., Ltd., Fukushima, Japan) for 15 min.
142	The milled materials were passed through a 149-µm sieve (Tokyo Screen Co. Ltd.,
143	Tokyo, Japan), and then milled APAP, TR-FB and intact MCC or milled MCC were

144	manually pre-mixed in a polyethylene bag for 5 min. Granulation was conducted
145	with a high-shear mixer (MECHANOMiLL, Okada Seiko Co., Ltd., Tokyo, Japan)
146	equipped with a rubber heater and temperature sensor as previously reported (Shiino
147	et al, 2012). The batch size was 130 g for all formulations; the formulation of each
148	batch is-summarized in Table 1. To manufacture granules, the jacket temperature was
149	fixed at approximately 85 °C, and the IS was set to 1200 rpm. After the product
150	temperature reached 77 $^{\circ}$ C, the rubber heater was turned off, the lid was removed
151	and mixture was agitated at various IS for 1 min. To cool the obtained products, the
152	mixture was removed from the bed of the mixer, and spread into thin layers on metal
153	trays.
154	
155	2.5.2. Granules containing BRH
156	Granules containing BRH were prepared by almost the same method as
157	APAP granules. Only two processes were different. One is that the size reduction of
158	BRH was performed using a different-type sample mill (SK-M, Kyoritsu-riko Co.,
159	Ltd., Tokyo, Japan) for 90 s. The other is that granulation was performed with
160	various IS as summarized in Table 1.

162 **2.6.** Particle size distribution

163	The particle size distribution of granules was evaluated by sieve analysis
164	using standard sieves (Tsutsui Scientific Instruments Co., Ltd., Tokyo, Japan) with
165	aperture sizes ranging from 54 to 1000 μ m. The relative width of the particle size
166	distribution (R_w) was calculated by the following equation,
167	$R_{\rm w} = \frac{d_{90} - d_{10}}{d_{50}} \qquad [1]$
168	where d_{10} , d_{50} , and d_{90} are 10%, 50%, and 90% of the accumulated particle size under
169	a screen, respectively.
170	
171	2.7. Roundness
172	One hundred granules with diameters in the range of 250–297 μm were
173	chosen randomly. Images of these granules were captured using an Olympus BHS
174	microscope (Olympus, Tokyo, Japan) connected to a digital imaging camera (Nikon
175	D80, Nikon, Tokyo, Japan). These images were analyzed with WinROOF image
176	analysis software (Version 5.5, Mitani, Fukui, Japan) to determine the exact
177	diameters and shapes of the granules. The shapes of the granules were defined by
178	their roundness (P_t/P_r) , where P_t is the theoretical perimeter length of a perfectly

179	spherical granule with the same area as the one being analyzed, and $P_{\rm r}$ is the actual
180	perimeter length.
181	
182	2.8. SEM observation of granules
183	The surface morphology of MB particles and granules with a diameter range
184	of 250–297 μ m was assessed by SEM as described above in section 2.4.
185	
186	2.9. Drug release test
187	The release behavior of APAP from granules with a diameter of 420–590
188	μ m for each formulation was examined in accordance with the paddle method listed
189	in the Japanese Pharmacopoeia 16 th Edition (JP 16 th). The test medium was 900 mL
190	of distilled water. The medium temperature was set to 37.0 ± 0.5 °C and the paddle
191	speed was 100 rpm. At each time point, a 5-mL aliquot of the test solution was
192	withdrawn and replaced with an equal volume of buffer solution, and the aliquot was
193	passed through a membrane filter (Pore size: 0.45 μ m, Toyo Roshi Kaisha Ltd.,
194	Tokyo, Japan). The amount of APAP released into the medium was quantitatively
195	determined by UV absorptiometry (UV-mini, Shimadzu, Kyoto, Japan) at 243 nm.

196	For BRH, granules with a diameter of 250–297 μm were tested. The test
197	medium was hydrochloride buffer solution (pH 1.2), and UV absorptiometry was
198	carried out at 245 nm. A series of dissolution tests for BRH granules was the same as
199	that for APAP granules.

200

201 2.10. Synchrotron X-ray computed tomography (CT) measurement

202	BRH granules with diameters of 250–297 μ m were put in Lindemann glass
203	capillaries with a diameter of 0.2–0.3 mm. X-ray CT measurements were performed
204	using a micro-CT instrument (Uesugi et al., 2012; Suzuki et al., 2011) installed at the
205	undulator beamline BL37XU of SPring-8 (Hyogo, Japan). The X-ray energy was set
206	to 8 keV, and flux density was approximately 6×10^{12} photons/s/mm ² . Nine hundred
207	transmission X-ray images, with parallel projection geometry, were recorded in 0.2°
208	steps with continuous rotation of the sample (on-the-fly scan mode). During
209	measurement, each sample was continuously irradiated with X-rays, and the
210	exposure time for each projection was 150 ms. The distance from the sample to the
211	area detector was 2 mm. CT measurement of one sample was accomplished within 5
212	min. All CT measurements were performed at room temperature. Tomographic
213	reconstruction was performed by the convolution-back-projection method using the

214	CBP package (Uesugi , 2004), and 1920 \times 1920 pixel cross-sectional images were
215	obtained. One pixel is equivalent to 0.444 \times 0.444 $\mu m.$ 3-D analyses of the
216	cross-sectional images were performed using the SLICE package (Nakano et al.,
217	2006) and ImageJ (Schneider et al., 2012). X-ray linear attenuation coefficient
218	(LAC) values between 0 and 70 cm^{-1} are shown in 8-bit grayscale in the images of
219	granules, and LAC values higher than 70 cm ⁻¹ are in white.
220	
221	2.11. Calculation of the void voxel ratio of granules
222	To evaluate the porosity of the granules, the void voxel ratio (VVR) was
223	calculated from slice images of X-ray CT. VVR is defined as follows:
	VVR = (number of voxels regarded as void in the sample)
	/ (number of total voxels in the sample)

- Voxels with LAC values less than 0.3 cm^{-1} were regarded as voids.
- 225

226 **3. Results and discussion**

227 3. 1. Evaluation of TR-FB as an MB

228 3.1.1. Heat and storage stability of GM and TR-FB

229	First, to determine whether TR-FB works as an MB, the crystal states of TR-FB
230	and GM, which is generally used as an MB, were evaluated by DSC and PXRD.
231	Figure 1 shows DSC curves of GM and TR-FB. In the first heating cycle, GM and
232	TR-FB exhibited endothermic peaks at 73.2 and 71.9 °C, respectively, and both
233	melted at a similar temperature. In the second heating cycle, the endothermic peak of
234	GM decreased to 67.5 °C because of the crystal transition from the stable β form to
235	the metastable α form, as reported by Yajima et al. (2002). GM also transforms from
236	the metastable form (α) to the stable form (β) through another metastable form (β ')
237	during storage at ambient temperature (Windbergs et al., 2009). This crystal
238	transition is likely to change the drug dissolution profile of granules prepared with
239	GM after storage. In contrast, the endothermic peak of TR-FB did not shift in the
240	second heating cycle. The PXRD pattern of TR-FB was the same before and after
241	melting (Fig. 2). This indicates that TR-FB does not show any crystal transition in
242	the investigated temperature range. Figure 3 shows SEM images of the surface of
243	GM and TR-FB particles prepared by a spray congealing method. After storage at

244	24 °C/25% RH for 6 weeks, acicular crystals were observed on the surface of GM
245	particles (Fig. 3b), consistent with previous observations (Windbergs et al., 2009).
246	Conversely, the TR-FB particle remained smooth even after storage (Fig. 3d). From
247	these results, TR-FB might be more stable as an MB than GM and should be suitable
248	for use in melt granulation.
249	
250	3. 1. 2. Effect of GM and TR-FB on granulation properties
251	Figure 4 shows the particle size distribution of granules prepared using GM
252	and TR-FB as an MB. In both types of granules, as the amount of GM or TR-FB
253	increased, the particle size of the granules also increased. Table 2 shows the
254	physicochemical properties of the granules, such as d_{50} , R_w , yield of particles in the
255	106–210 μ m range and roundness. The roundness of both types of granules was high
256	(over 0.83). When comparing the same amount of MB, d_{50} of TR-FB granules was
257	larger than that of GM granules; however, R_w of TR-FB granules was smaller, and
258	yield of particles in the 106–210 μm range of TR-FB is higher than that of GM
259	granules. This is because of the difference in the particle size and viscosity of melted
260	GM and TR-FB. The mean particle sizes of GM and TR-FB powders were 41 and 3.8

 $261~\mu m,$ respectively, while the viscosities of GM and TR-FB at 80 $^{\circ}C$ are 27.3 and 31.3

262	mPa \cdot s, respectively. Previous literature suggested that a difference of viscosity of
263	about 4 mPa \cdot s caused differences of physicochemical properties such as d_{50} and R_w
264	(Eliasen et al., 1999). The granule growth mechanism of melt granulation is shown in
265	Fig. 5a. Melted MB particles adhere to the powder, allowing the powder particles to
266	bond with each other to make core particles (distribution phase). Then, these core
267	particles adhere to each other (coalescence phase) and the granules become larger by
268	adhering repeatedly, suggesting that when the core particle is larger, the resulting
269	granules are larger. When the product is cooled and the temperature is close to the
270	melting point of the MB, the MB starts to congeal, and granules are sheared by the
271	impeller blade (Fig. 5b). Eliasen reported that when the viscosity of an MB is less
272	than 50 mPa \cdot s, adhesion and breakage occur simultaneously during the coalescence
273	and agglomeration phase (Eliasen et al., 1999), so the particle size of granules
274	depends on the balance between adhesion and breakage. Therefore, in GM with a
275	large particle size, the core particles were large so the granules were also large.
276	Moreover, because of the low viscosity of GM, breakage frequently occurred in the
277	agglomeration phase to produce a large amount of finely crushed granules. As a
278	result, GM granules had a small d_{50} and large R_w . In contrast, for TR-FB with smaller
279	particle size and higher viscosity than those of GM, the core particles were smaller

Aoki H. et al., Page 18

280	and less breakage occurred, so the TR-FB granules had lower R_w and a larger yield of
281	fine granules with a particle size range of 106 to 210 μ m than those of GM. Figure 6
282	shows drug dissolution profiles of GM and TR-FB. TR-FB granules showed more
283	sustained release than GM granules. Because the hydrophile-lipophile balance values
284	of GM and TR-FB are 4.0 and 2.1 respectively, TR-FB is more hydrophobic than
285	GM. Taken together, these findings suggest that TR-FB is a better MB than GM for
286	preparing fine granules with sustained drug release properties.
287	
288	3.2. Effect of MCC milling on granule properties
289	3. 2. 1. Particle size and external structure of granules
289 290	3. 2. 1. Particle size and external structure of granulesFigure 7 shows SEM images of intact and milled MCC particles. Intact
289 290 291	 3. 2. 1. Particle size and external structure of granules Figure 7 shows SEM images of intact and milled MCC particles. Intact MCC particles were acicular, and their mean diameter was approximately 90 μm
289 290 291 292	 3. 2. 1. Particle size and external structure of granules Figure 7 shows SEM images of intact and milled MCC particles. Intact MCC particles were acicular, and their mean diameter was approximately 90 μm (Fig. 7a). After milling, the MCC particles had an undefined shape and their mean
289 290 291 292 293	 3. 2. 1. Particle size and external structure of granules Figure 7 shows SEM images of intact and milled MCC particles. Intact MCC particles were acicular, and their mean diameter was approximately 90 μm (Fig. 7a). After milling, the MCC particles had an undefined shape and their mean diameter was approximately 10 μm (Fig. 7b).
289 290 291 292 293 294	 3. 2. 1. Particle size and external structure of granules Figure 7 shows SEM images of intact and milled MCC particles. Intact MCC particles were acicular, and their mean diameter was approximately 90 μm (Fig. 7a). After milling, the MCC particles had an undefined shape and their mean diameter was approximately 10 μm (Fig. 7b). Figure 8 shows the particle size distributions of granules prepared with
 289 290 291 292 293 294 295 	 3. 2. 1. Particle size and external structure of granules Figure 7 shows SEM images of intact and milled MCC particles. Intact MCC particles were acicular, and their mean diameter was approximately 90 μm (Fig. 7a). After milling, the MCC particles had an undefined shape and their mean diameter was approximately 10 μm (Fig. 7b). Figure 8 shows the particle size distributions of granules prepared with intact and milled MCC. Table 3 shows physicochemical properties of the granules,
 289 290 291 292 293 294 295 296 	 3. 2. 1. Particle size and external structure of granules Figure 7 shows SEM images of intact and milled MCC particles. Intact MCC particles were acicular, and their mean diameter was approximately 90 μm (Fig. 7a). After milling, the MCC particles had an undefined shape and their mean diameter was approximately 10 μm (Fig. 7b). Figure 8 shows the particle size distributions of granules prepared with intact and milled MCC. Table 3 shows physicochemical properties of the granules, The granules containing 22.5% TR-FB and intact MCC (Fig. 8a, Batch 7) showed

298	milled MCC (Fig. 8b, Batch 12). This indicates that even a small amount of TR-FB
299	was sufficient to prepare granules when milled MCC was used. For milled MCC,
300	addition of a larger amount of TR-FB and increasing IS increased granule size
301	compared with use of intact MCC, suggesting that careful control of operating
302	conditions is needed to prepare fine granules smaller than 200 $\mu m.$ The roundness of
303	both types of granules was almost the same (Table 3). In both types of granules,
304	addition of a smaller amount of TR-FB and lower IS were found to make granules
305	rounder and vice versa. The granules prepared with either intact or milled MCC
306	using different binder concentration and IS had a similar appearance (Fig. 9).
307	
308	3. 2. 2. Drug dissolution from granules
309	Figure 10 shows dissolution profiles of BRH from granules containing
310	intact or milled MCC. For the milled MCC granules, it took about 30-60 min for
311	80% of the BRH to dissolve (Fig. 10B), while it took only about 15–30 min for 80%
312	of the BRH to dissolve from the intact MCC granules (Fig. 10A). Although the
313	appearance of these granules was almost the same (Fig. 9) and a larger amount of
314	TR-FB was present in the intact MCC granules than in the milled MCC ones, the
315	milled MCC granules exhibited more sustained drug release than the intact MCC

ones. This may be caused by differences in the internal structure of the granules, so
we conducted synchrotron X-ray CT measurements to obtain cross-sectional images
of the granules.

319

320 3. 2. 3. Internal structure of granules

Figure 11 shows cross-sectional X-ray CT images of the granules. White 321and black areas in each figure represent BRH (calculated LAC = 75.5 cm^{-1}) and void 322space, respectively. Brighter gray and darker gray areas represent MCC (12.4 cm⁻¹) 323and TR-FB (4.1 cm⁻¹), respectively. TR-FB in intact MCC granules was present 324325mainly near the surface of the granules and adhered to MCC particles, which produced voids inside the granules (Fig. 11A-E). Conversely, in the milled MCC-326 327 granules, TR-FB surrounded milled MCC particles, and no large voids were observed (Fig. 11F-J). This indicates that because intact MCC particles became core 328329particles and adhered to each other to form granules, voids were caused by the 330 acicular shape of intact MCC. In contrast, in milled MCC granules, because the MCC particles were non-acicular and small, they were surrounded by TR-FB 331332efficiently, and granules with rigid structure were formed. Focusing on the 333 distribution of BRH, in intact MCC granules, BRH was found near the surface of the

334	granules, while BRH was uniformly distributed throughout milled MCC granules.
335	This is because the high hydrophobicity of BRH means that it has a high affinity for
336	hydrophobic TR-FB, indicating that the drug distribution in the granules depends on
337	the characteristics of the MB.
338	The VVR of each granule was then calculated (Fig. 12). In intact MCC
339	granules, VVR is significantly lower (26–27% to 15–17%) when the amount of MB
340	is higher (22.5% to 27.5%) (p <0.01, compared with batch No. 7). Conversely, in
341	milled MCC granules, all of the granules exhibited markedly lower VVR (5-8%)
342	compared with that of the intact MCC granules (15–27%) (p <0.001, compared with
343	batch No. 7). This difference of the porosity of the granules might cause the
344	difference of the drug release profiles of intact and milled MCC granules. Figure 13
345	shows the relationship between VVR and 80% drug release time from each granule.
346	Although these granules were prepared by different binder ratios, which affect the
347	drug dissolution ratio and by various impeller speeds while granulation, high
348	correlation coefficient value of liner regression was obtained. This is to say, because
349	of the higher porosity of intact MCC granules, test solution entered the granules
350	more readily, so the area where BRH was in contact with the test solution was larger

352	BRH faster than milled MCC granules.
353	Up to now, it has been thought that melt granulation generally produces
354	granules with rigid structure because of the high speed of the impeller and high

than that in the milled MCC granules. As a result, intact MCC granules released

355 centrifugation force regardless of formulation and operating conditions. However,

356 our results demonstrate that the milling process of the excipient affects the

357 distribution of drug particles and void space ratio in granules formed by high-shear

358 melt granulation, and these differences in the inner structure of granules affect drug

359 release.

Aoki H. et al., Page 23

360 **4. Conclusions**

361	We investigated TR-FB as an MB and the effect of milling MCC with the objective
362	of preparing fine granules with sustained drug release properties. TR-FB was more
363	stable during heating and storage than GM, a commonly used as MB. Granules
364	prepared with TR-FB were smaller, had a narrower particle size distribution, and
365	showed a better-sustained drug release profile compared with those formed with GM.
366	In addition, granules prepared with milled MCC had rigid structure, whereas those
367	produced with intact MCC had large void space. Consequently, the granules prepared
368	with milled MCC showed better-sustained drug release behavior than that of granules
369	formed with intact MCC, because penetration of test solution into granules was
370	limited. Our results reveal that TR-FB is suitable as an MB and milling MCC affects
371	the physicochemical properties and drug dissolution behavior of granules. Fine
372	granules with a diameter of less than 200 μ m and sustained drug release behavior
373	were successfully prepared using TR-FB and milled MCC. In the near future, after
374	adding functional polymers to enhance the sustained release properties, further in
375	vivo studies would be necessary.
376	

377 **References**

378 E	Eliasen, H.	, Kristensen	, H. C	G., Schaefer,	Т.,	1999.	Growth	mechanisms	in m	ıelt
-------	-------------	--------------	--------	---------------	-----	-------	--------	------------	------	------

- agglomeration with a low viscosity binder. *Int. J. Pharm.* 186, 149–159.
- 380 FAO/WHO Joint Expert Committee on Food Additives (JECFA) 1989.
- Hamdani, J., Moës, A. J., Amighi, K., 2002. Development and evaluation of
- 382 prolonged release pellets obtained by the melt pelletization process. *Int. J.*
- 383 *Pharm.* 245, 167–177.
- Hamdani, J., Goole, J., Moes, J. A., Amighi, K., 2006. In vitro and in vivo evaluation
- 385 of floating riboflavin pellets developed using the melt pelletization process.
- 386 Int. J. Pharm. 323, 86–92.
- Hubbell, J. H., Seltzer, S. M., 1996. Physical reference data, NISTIR. p. 5632.
- 388 ICH guideline Q3C on impurities: guideline for residual solvents. May, 30. 1998
- 389 Kamiryo, E., Harada, K., 2004. Japan Patent Kokai 2002-274768.
- 390 Kato, H., 2011. http://www.fujita-hu.ac.jp/~hid-kato/freesoft.html
- 391 Kowalski, J., Kalb, O., Joshi, M. Y., Serajuddin T. M. A., 2009. Application of melt
- 392 granulation technology to enhance stability of a moisture sensitive
- immediate-release drug product. *Int. J. Pharm.* 381, 56–61.

394	Kukec, S., Dreub, R., Vrbanec, T., Srcic, S., Vrecer, F., 2012. Characterization of
395	agglomerated carvedilol by hot-melt processes in a fluid bed and high shear
396	granulator. Int. J. Pharm. 430, 74-85.
397	Nakano, T., Tsuchiyama, A., Uesugi, K., Uesugi, M., Shinohara, K., 2006. "Slice"
398	Software for basic 3-D analysis. <u>http://www-bl20.spring8.or.jp/slice/</u>
399	Nitanai, Y., Agata, Y., Iwao, Y., Itai, S., 2012. A novel mathematical model
400	considering change of diffusion coefficient for predicting dissolution
401	behavior of acetaminophen from wax matrix dosage form. Int. J.Pham. 428,
402	82–90.
403	Ochoa, L., Igartua, M., Hernández, R. M., Gascón, A. R., Solinis, M. A., Pedraz, J.L.,
404	2011. Novel extended-release formulation of lovastatin by one-step melt
405	granulation: in vitro and in vivo evaluation. Eur. J. Pharm. Biopharm. 77,
406	306–312.
407	Perissutti, B., Rubessa, F., Moneghini, M., Voinovich, D., 2003. Formulation design
408	of carbamazepine fast-release tablets prepared by melt granulation technique.
409	Int. J. Pharm. 256, 53–63.
410	Schaefer, T., Mathiesen, C., 1996. Melt pelletization in a high shear mixer. IX.
411	Effects of binder particle size. Int. J. Pharm. 139, 139-148.

412	Schaefer, T., Johnsen, D., Johansen, A., 2004. Effect of powder particle size and
413	binder viscosity on intergranular and intragranular particle size
414	heterogeneity during high shear granulation. Eur. J. Pharm. Sci. 21,
415	521–531.
416	Schneider, C. A., Rasband, W. S., Eliceiri, K. W., 2012. NIH Image to ImageJ: 25
417	years of image analysis. Nat. Methods 9, 671–675.
418	Shah, S., Maddineni, S., Lu, J., Repka, M. A., 2013. Melt extrusion with poorly
419	soluble drugs. Int. J. Pharm. 453, 233–252.
420	Shah, K. P., Chafetz, L., 1994. Use of sparingly soluble salts to prepare oral
421	sustained-release suspensions. Int. J. Pharm. 109, 271-281.
422	Shiino, K., Iwao, Y., Fujinami, Y., Itai, S., 2012. Preparation and evaluation of
423	granules with pH-dependent release by melt granulation. Int. J. Pharm. 431,
424	70–77.
425	Suzuki, Y., Takeuchi, A., Uesugi, K., 2011. Current status of microtomography with
426	synchrotron radiation X-ray source. J. Vac. Soc. Jpn. 54, 47–55.
427	Thomsen, L. J., Schaefer, T., Kristensen, H.G., 1994. Prolonged release matrix
428	pellets prepared by melt pelletization II. Hydrophobic substances as
429	meltable binders. Drug Dev. Ind. Pharm. 20, 1179-1197.

430 Tsuchiyama, A., Uesugi, M., Matsushima, T., Michikami, T., et al., 2011.

431	Three-dimensional structure of Hayabusa samples: origin and evolution of
432	Itokawa regolith. Science 333, 1125–1128.
433	Uesugi, K., 2004. http://www-bl20.spring8.or.jp/xct/index.html
434	Uesugi, K., Hoshino, M., Takeuchi, A., Suzuki, Y., Yagi, N., 2012. Development of
435	fast and high throughput tomography using CMOS image detector at
436	SPring-8. Proc. SPIE 8506, 850601-850601.
437	Windbergs, M., Strachan, C. J., Kleinebudde, P., 2009. Investigating the principles of
438	recrystallization from glyceride melts. AAPS PharmSciTech. 10, 1224–1233.
439	Yajima, T., Itai, S., Takeuchi, H., Kawashima, Y., 2002. Determination of optimum
440	processing temperature for transformation of glyceryl monostearate. Chem.
441	Pharm. Bull. 50, 1430–1433.
442	Windbergs, M., Strachan, C. J., Kleinebudde, P., 2009. Influence of the composition
443	of glycerides on the solid-state behaviour and the dissolution profiles of
444	solid lipid extrudates. Int. J. Pharm. 381, 184–191.
445	
446	

Aoki H. et al., Page 28

447 **Table captions**

- 448 **Table 1.**
- 449 Formulations of granules and operating conditions.
- 450 **Table 2.**
- 451 Properties of particles prepared with GM (Batch No. 1-3) and TR-FB (Batch No.
- 452 **4-6**).
- 453 **Table 3.**
- 454 Properties of particles prepared with intact MCC (Batch No. 7-11) and milled MCC
- 455 (Batch No. 12-16).

Table 1.

		Operation					
Batch No.	APAP (%)	BRH (%)	GM (%)	TR-FB (%)	Intact MCC (%)	Milled MCC (%)	IS (rpm)
1	10	_	20.0	_		70.0	400
2	10		22.5			67.5	400
3	10	_	25.0	_	_	65.0	400
4	10	_		20.0	_	70.0	400
5	10	_		22.5	_	67.5	400
6	10			25.0		65.0	400
7	_	10	_	22.5	67.5	_	400
8	—	10	—	22.5	67.5	_	1200
9	_	10	_	27.5	62.5	_	400
10	—	10	—	27.5	62.5	_	1200
11	—	10	—	27.5	62.5	_	1600
12	—	10	—	22.5	—	67.5	400
13	—	10	—	22.5	—	67.5	1200
14	_	10	_	27.5	_	62.5	1600
15		10		27.5	_	62.5	400
16		10		27.5		62.5	1200

Table 2.

Batch No.	1	2	3	4	5	6
MB		GM		TR-FB		
(%)	20	22.5	25	20	22.5	25
d ₅₀ (μm)	101	105	195	125	160	290
$R_{ m w}$	4.16	3.41	2.91	1.92	1.78	2.27
Yield (%) (106-210 µm)	17.2	21.9	38.6	50.0	59.4	25.9
Roundness	0.86	0.89	0.88	0.86	0.86	0.83

Table 3.

Batch No.	7	8	9	10	11	
Excipient			Intact MC	С		
Binder (%)	22.5	22.5	27.5	27.5	27.5	
IS (rpm)	400	1200	400	1200	1600	
d ₅₀ (μm)	155	154	180	187	197	<u></u>
$R_{ m w}$	0.93	0.93	1.21	1.45	1.26	
Yield (%) (106-210 μm)	66.7	66.9	56.9	51.5	47.0	
Roundness	0.88	0.85	0.83	0.78	0.78	

Batch No.	12	13	14	15	16
Excipient			Milled MCC	2	
Binder (%)	17.5	17.5	17.5	22.5	22.5
IS (rpm)	400	1200	1600	400	1200
d ₅₀ (μm)	149	197	185	351	421
$R_{ m w}$	1.28	1.90	2.25	1.90	1.53
Yield (%) (106-210 μm)	61.2	45.8	47.3	17.6	9.6
Roundness	0.89	0.81	0.83	0.80	0.79

465 Figure legends

- 466 Fig. 1. DSC curves of GM (A, B) and TR-FB (C, D) measured on first (A, C) and
- 467 second (\mathbf{B}, \mathbf{D}) heating cycles.
- 468 **Fig. 2.** PXRD patterns of TR-FB before (**A**) and after (**B**) heating.
- 469 Fig. 3. SEM images of the surface of MB particles prepared by a spray congealing
- 470 method using (**A**, **B**) GM and (**C**, **D**) TR-FB (**A**, **C**) before and (**B**, **D**) after storage
- 471 for 6 weeks.
- 472 **Fig. 4.** Effect of binder concentration on the particle size distributions of granules
- 473 prepared with (A) GM or (B) TR-FB.
- 474 **Fig. 5.** Diagram of the granulation mechanism in melt granulation (**A**) above and (**B**)
- anear the melting temperature of the MB.
- 476 **Fig. 6.** Drug dissolution profile from granules prepared with GM or TR-FB.
- 477 **Fig. 7.** SEM images of MCC (**A**) before and (**B**) after milling.
- 478 Fig. 8. Particle size distribution of granules prepared with (A) intact or (B) milled
- 479 MCC with various IS.
- 480 Fig. 9. SEM images of granules prepared with (A-E) intact or (F-J) milled MCC
- 481 with various IS.

482 **Fig. 10.** Drug dissolution profiles of granules prepared with (**A**) intact or (**B**) milled

483 MCC with various IS.

484 Fig. 11. X-ray CT images of granules prepared with (A-E) intact or (F-J) milled

- 485 MCC with various IS.
- 486 Fig. 12. VVR of granules prepared with intact or milled MCC with various IS. *:
- 487 p < 0.01 and **: p < 0.001, compared with VVR of batch No. 7.
- 488 **Fig. 13.** Relationship between VVR and 80% drug release time.