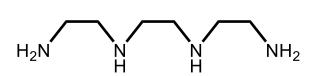
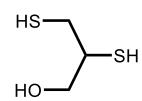
キレート療法剤


有毒金属による中毒

無機金属医薬品の多量摂取による中毒


金属イオンの低毒性化体外排泄を促進化させる薬剤

金属キレート剤

トリエチレンテトラミン

Cu²⁺ 除去(ウィルソン病)

ジメルカプロール

As中毒

$$HO_2C$$
 N
 CO_2H
 CO_2Na
 NaO_2C

エデト酸ナトリウム

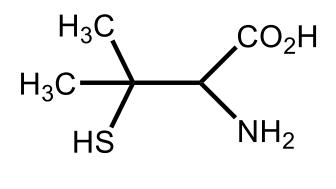
$$H_2N$$
 H_0
 H_0

デスフェリオキサミン

クーリー貧血(サラセミア)(鉄過剰症)

ウィルソン病

Text p.147

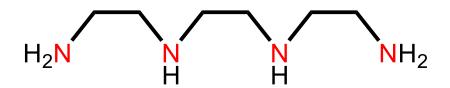

銅の代謝異常による疾患

目・肝・脳・腎などに銅が蓄積

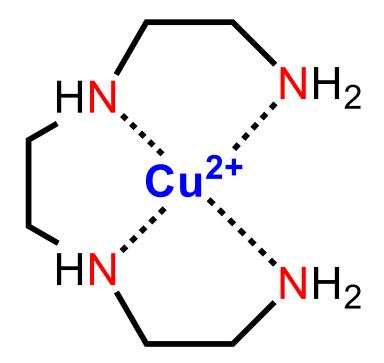
銅をキレートで除去


ペニシラミン・トリエチレンテトラミン

ペニシラミン


Cu²⁺ 除去 ウィルソン病治療薬

Text p.147


トリエチレンテトラミン

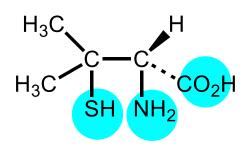
トリエチレンテトラミン

トリエチレンテトラミン

4座配位子

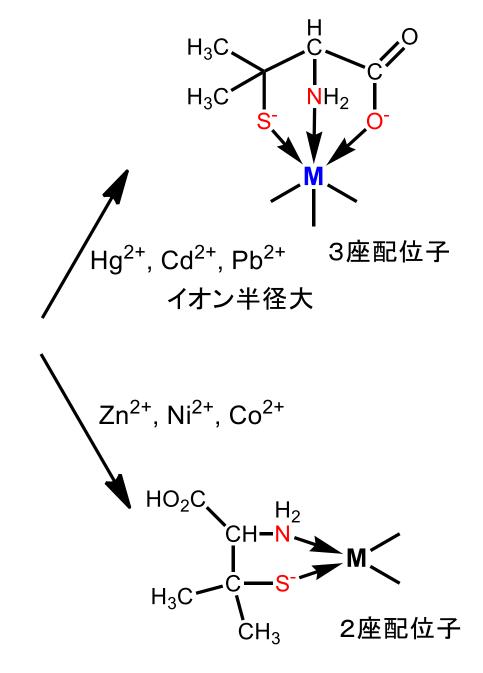
1:1の安定な錯体を形成(キレート効果)

D-ペニシラミン


$$H_3C$$
 H_3C
 $C-C$
 H_3C
 $C-C$
 CO_2H
 $SHNH_2$
 $D-^2=>=>$
 D -penicillamine

最大三座配位子

ペニシラミンはペニシリンの 分解産物から由来するアミノ酸 であるが, 抗菌作用はない.


銅、鉄、水銀、鉛、金 などの金属をキレート化し、 尿中に排泄 される可溶性複合体を作る。

D-ペニシラミン

D-ペニシラミン

max 3座配位子

**2006年8月改訂(第5版) *2005年10月改訂

庁 法:本刺は吸湿性のた め、気密容器に保 存すること 変遷保存

使用期限:5年 (ラベルに表 示の使用期限内に 使用すること) 制酸剤

日本薬局方 アルミニウムゲル細粒 **アルミザリ[®]細粒99**x **ALUMIGEL**[®] 日本標準商品分類番号 872343

*	承認番号	21800AMX10796
	英価収載	1976年6月
	販売開始	1964年5月
	再評価結果	1982年1月


2. 相互作用

併用注意 (併用に注意すること)

莱剤名等	臨床症状·措置方法	機序・危険因子
クエン酸製剤 クエン酸カリウム、 クエン酸ナトリウム 等	血中アルミニウム濃度 が上昇することがある ので、同時に服用させ ないなど注意するこ と。	キレートを形成 し、アルミニウ ムの吸収が促進 されると考えら れる。
血清カリウム抑制イ オン交換樹脂 ポリスチレンスル ホン酸カルシウ ム、ポリスチレン スルホン酸ナトリ ウム	血清カリウム抑制イオン交換樹脂の効果が減 関するおそれがある。	アルミニウムイ オンと非選択的 に交換すると考 えられる。
18		
ペニシラミン	ペニシラミンの効果が 被弱するおそれがあ る。	同時投与した場合、ペニシラミ ンの吸収率が低

ミコフェノール酸チ ミコフェノール酸チ 併用により

併用注意

吸収促進

吸収されては いけない金属が 吸収されてしまう 吸収阻害

本来の薬効が発揮されない

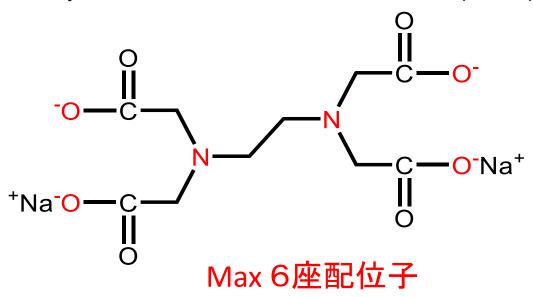
酢酸亜鉛

ウィルソン病 治療薬

 $Zn(CH_3COO)_2 \cdot 2H_2O$

ノベルジン®カプセル50mg

ノベルジン®カプセル25mg



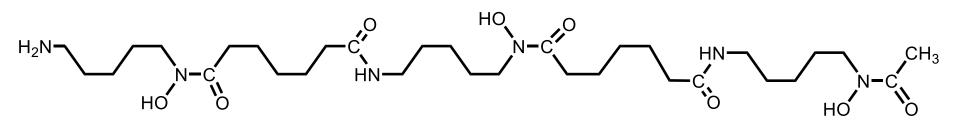
(Text p.178)

腸管細胞で金属キレート作用を持つメタロチオネインの生成を誘導し、 食物中のなどの銅を腸管粘膜上皮細胞で結合し、銅の門脈循環中へ の移行を阻害し、銅の吸収を阻害する. メタロチオネインと結合した銅 は吸収されず、糞便中に排泄される.

エデト酸ナトリウム

Ethylenediamine-*N*,*N*,*N*',*N*'-tetraacetate (EDTA)

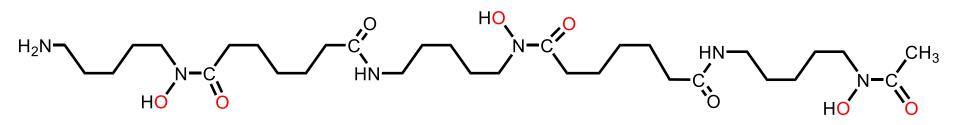
金属イオン(特に鉛, カドミウム)の 体外排泄に有効


安定な水溶性錯体を形成

生体内のカルシウムイオン までも捕捉してしまう

> 親和性 Cd²⁺ > Ca²⁺

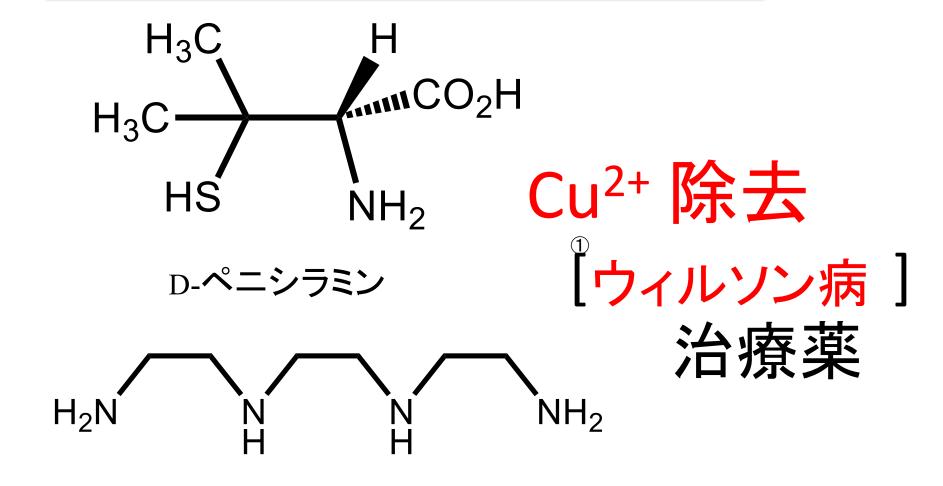
デスフェリオキサミン


Fe³⁺にきわめて親和性が高い

クーリー貧血(サラセミア)の治療薬

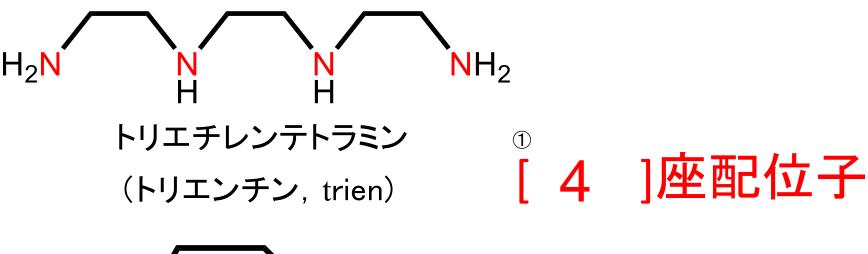
デスフェリオキサミン

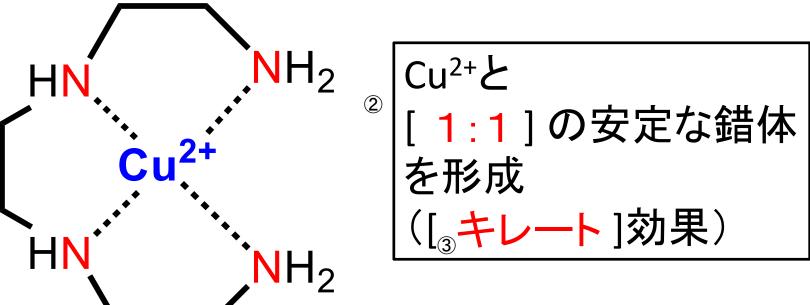
Fe³⁺にきわめて親和性が高い

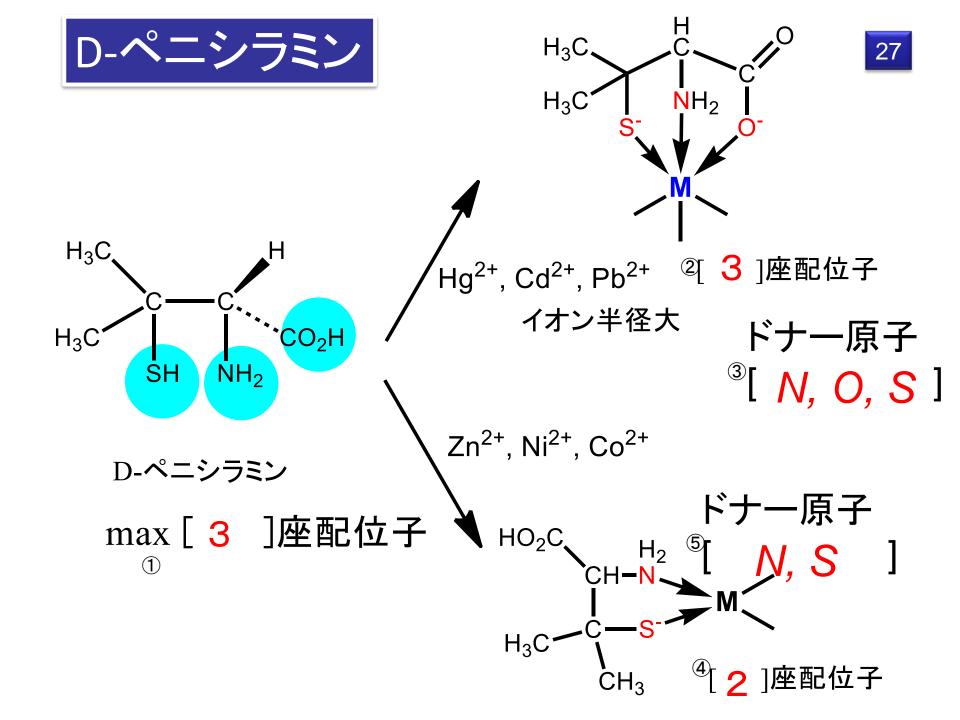


ヒドロキサム酸基

クーリー貧血(サラセミア)の治療薬


異常ヘモグロビンの産生 鉄の臓器沈着 まとめ


ペニシラミン・トリエチレンテトラミン



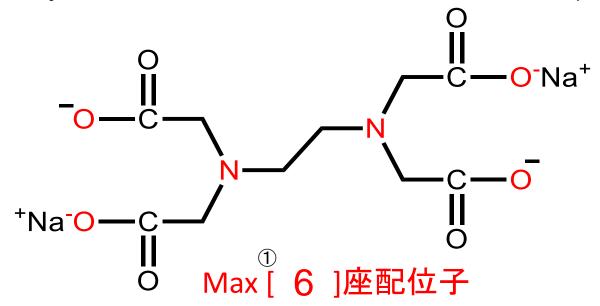
トリエチレンテトラミン

トリエチレンテトラミン

D-ペニシラミン

$$H_3C$$
、 H_3C 、 $C-C$ $C-C$ CO_2H $SHNH_2$ $D-ペニシラミン$ D -penicillamine

最大[3]座配位子


ペニシラミンはペニシリンの 分解産物から由来するアミノ酸 であるが, 抗菌作用はない.

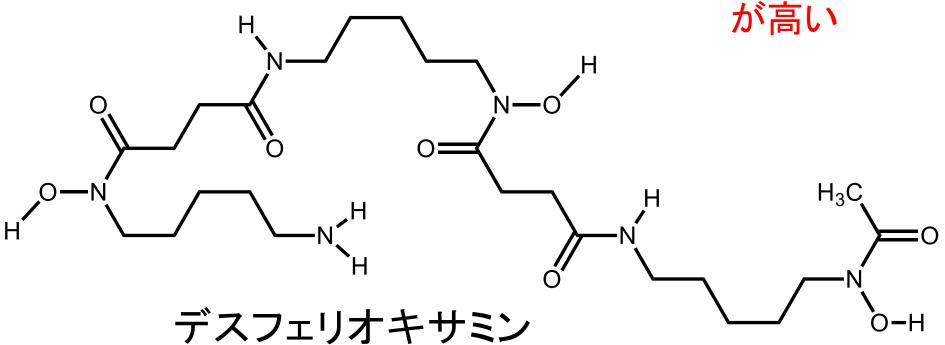
銅、鉄、水銀、鉛、金 などの金属をキレート化し、

^②[**尿**]中に排泄 される[**可溶**]性複合体を作る。

エデト酸ナトリウム

Ethylenediamine-*N*,*N*,*N*',*N*'-tetraacetate (EDTA)

金属イオン(特に <mark>鉛</mark>), [カドミウム]) の体外排泄に有効 **介**

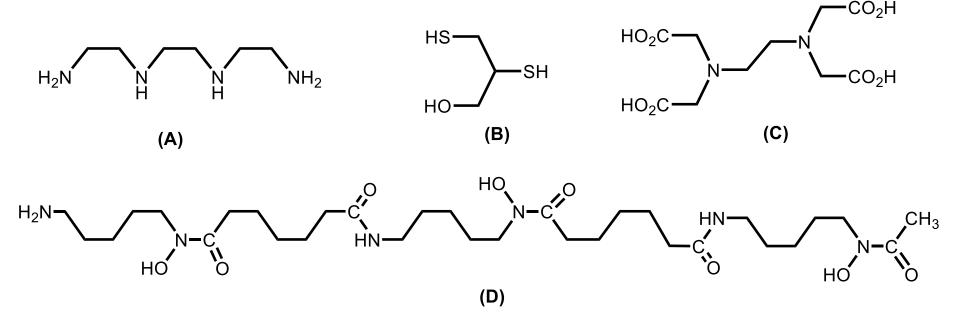

安定な[水溶]性錯体を形成

生体内のカルシウムイオン までも捕捉してしまう

> 親和性 Cd²⁺ > Ca²⁺

デスフェリオキサミン

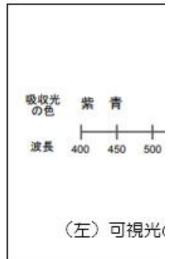
[Fe3+]にきわめて親和性

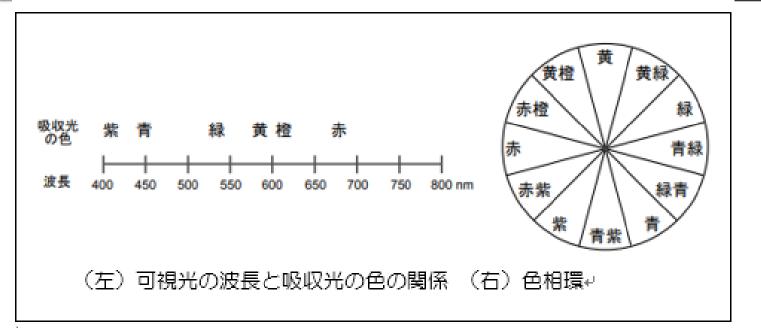


クーリー貧血(サラセミア)(鉄過剰症)

「6]座配位子

次の問いに答えよ.


- (1) 鉄の過剰症であるクーリー貧血(サラセミア)の治療に用いられるキレート剤はどれか.
- (2) カドミウム中毒に用いられるキレート剤はどれか.
- (3) ヒ素中毒に用いられる化合物はどれか.
- (4) ウィルソン病に用いられるCu²⁺と1:1の安定な錯体を形成するキレート 剤はどれか.



必要ならば、次の値を参照せよ。 ↩

電気陰性度(Pauling の値): H (2.20), Li (0.98), B (2.04), N (3.04), O (3.44), Na (0.93), Al (1.61)

IM	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	H																H 1	He 2
2	Li 3	Be 4											B 5	C 6	N 7	0 8	F 9	Ne 10
3	Na 11	Mg 12		Al 13									Si 14	P 15	S 16	CI 17	Ar 18	
4	K 19	Ca 20	Sc 21	Ti 22	V 23	Cr 24	Mn 25	Fe 26	Co 27	Ni 28	Cu 29	Zn 30	Ga 31	Ge 32	As 33	Se 34	Br 35	Kr 36
5	Rb 37	Sr 38	Y 39	Zr 40	Nb 41	Mo 42	Te 43	Ru 44	Rh 45	Pd 46	Ag 47	Cd 48	In 49	8n 50	8b 51	Te 52	1 53	Xe 54
6	Ca 55	Ba 65	57~71	Hf 72	Ta 73	W 74	Re 75	0a 76	1r 77	Pt 78	Au 79	Hg 80	T1 81	Pb 82	Bi 83	Po 84	At 85	Rn 86
7	Fr 87	Ra 88	89~ 103	Rf 104	Db 105	Sg 106	Bh 107	Hs 108	Mt 109									Г

