1. 原子軌道(atomic orbital)

電子の分布の形状は電子の波動性のため、不連続となる(決まった波長の波以外は波の干渉のため存在できない). これを量子化(quantization)という.

この量子化された電子状態と対応するエネルギーはシュレイディンガー(Schrödinger)方程式を解くことで求めることができる. 量子化された電子状態とエネルギーを決める指数を量子数(quantum number)という.

原子に関係する量子数は、主量子数(principal quantum number: n), 方位量子数(azimuthal quantum number: I), 磁気量子数(magnetic quantum number: m)がある.

電子状態の決まり方の順は、主量子数→方位量子数→磁気量子数である。

電子状態はn, I, mのいずれかが異なると, 異なる状態である. n, I, mで定まる電子のエネルギーと電子状態を表す数学的関数 を原子軌道(atomic orbital)といい, 原子軌道に対応するエネル ギー値をその軌道のエネルギー準位(energy level)という.

1つの原子軌道にスピン量子数(spin quantum number)を異にして2個の電子が入ることができる.

通常, 電子はもっともエネルギーが低くなるように入る. 電子の入り方を電子配置(electronic configuration)といい, もっとも低いエネルギーの電子配置の状態を電子の基底状態という.

2. 主量子数(principal quantum number: n)

nは原子軌道の基本となる量子数であり、nの値は、原子軌道によって決まる電子分布の原子核からの大まかな距離を表す指標である.

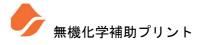
nは, n=1, 2, 3, ・・の自然数をとり, それぞれK殻, L殻, M殻, ・・という名称が付けられている(右図). これを電子殻(electronic shell)という.

電子殻は、主量子数(n)とそれに付随する方位量子数(l)、磁気量子数(m)を合わせたものをいう.

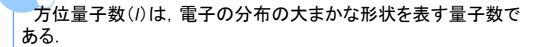
各殻によって収容できる電子数が異なり主量子数nに対し、2n²個が最大収容電子数である。

K殻には2個、L殻には8個、M殻には18個の電子を収容できる.

問題1. 次の「]の中を適切な単語あるいは記号で埋めよ.


- 1. 原子の電子状態とエネルギーを決める指数を[]という.
- 2. 原子の[] は, [] (*m*) がある.

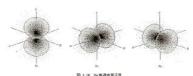
](n), [


](/),

M殼

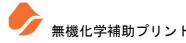
- 3. *n*, *l*, *m* で定まる電子のエネルギー状態と分布形状は数学的 関数として表すことができ、これを[]という.
- 4.1つの[]に[]の向きが異なる2個の電子が入ることができる.
- 5. *n* は原子核からの大まかな距離を表す指標で, *n=1, 2, 3, ・・* の自然数をとり, それぞれ[]設, []設, []設, ・・の名称が付けられている.
- 6. 各殻によって収容できる電子数が異なりn に対し最大収容電子数は[]である.

3. 方位量子数(azimuthal quantum number: I)


/は主量子数nに依存し, nがきまると, 0, 1, 2, ・・n-1までの値を とる. n=1なら, /は0のみ, n=2なら, /は0と1, さらにn=3なら, /は0と1 と2という意味である.

/=0, 1, 2, 3, についてs, p, d, f, …の記号がつけられている.

s型の軌道は球形, p型の 軌道は亜鈴状である(右 図). d, f・になるに従い, 原子軌道の形状はより複 雑になる.


s軌道 (球形)

p軌道 (亜鈴状)

問題2. 次の「]の中を適切な単語あるいは記号で埋めよ.

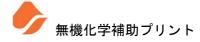
- 1. 方位量子数 / =0 の原子軌道は球状であり、[]軌道とよばれる.
- 3. L 殻の電子殻は主量子数=[]に対応する. L 殻に方位量子数は,[],[]の状態がありそれぞれ主量子数[]を併記して[]と[]の記号で表される.
- 4. M 殻の電子殻は主量子数=[]に対応する. M 殻には方位量子数は,[],[]がありそれぞれ主量子数[]をつけ「],[]の記号で表される.
- 5. 方位量子数 / の数が多くなるほど、電子分布形状がより[ここ]になる.
- 6. N 殻のすべての原子軌道を記号で表すと、[]である.

5. 磁気量子数 (magnetic quantum number: m)

nとIで定められる原子軌道は、Iの値により電子の分布形状が異なるが、それらの原子軌道に入る電子のエネルギー値は同じである。

一般に、異なる電子状態が複数あり、それらのエネルギーの値は等しい場合は、縮重(縮退:degeneration)しているという。

/≠0のとき原子軌道は縮重している. しかし, 磁場を与えると電子の分布方向の違い(あるいは電子の運動の方向が異なること)により, 電子の運動が発生する磁場との反応が異なる(これを異方性(anisotropy)という). そのため, 磁場のなかでは, 原子軌道のエネルギーは/の値によって異なる(分離する).


)このように縮重した状態が分離することを一般に解縮重(解縮 (退)という.

s 軌道に入った電子は球状に分布するため、磁場の方向によって、エネルギーは変わらないが、p原子軌道では電子の運動方向が磁場の方向に対し等価でないため、エネルギー差が生ずるようになる.

磁場によって分離する状態の数は、/の値に対して, -l, -l+1, -l+2, *・0, 1, 2, ・・/ の合計2/+1個がある. これらをmの記号で表し磁気量子数という.

mは方位量子数/に依存し、I=0なら、m=0のみ(1状態)、I=1なら、mは-1と0と1の3状態、さらにI=2なら、m=-2,-1,0,1,2の5状態があるという意味である. (副殻の数、3つのp軌道、5つのd軌道など) 2px,2py,2pz

要するに、*I=0*の場合は軌道の形が球状であるため磁場を与えても分離しないが、*I=0*以外は磁場による異方性により*mで*与えられる状態数に分離する.

問題3. 次の[]の中を適切な単語あるいは記号で埋めよ.

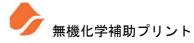
- 1. 原子軌道に入る電子のエネルギーは, [](n)と[](n) できまる.
- 2. /=0 の場合は、電子は「]状に分布する.
- 3. 異なる状態が複数ありそれらのエネルギーの等しい場合は, それらは[](あるいは[])しているという.
- 4. 電子は[]の電荷を持つため, 運動によって[] を発生する.
- 5. /=0 以外の原子軌道は、磁場の中では電子が作る[]と の相互作用のため、 *軌*道のエネルギーが異なり分離する. これ を[]という.
- 6. 方位量子数 / の場合、磁場を与えると[のように合計「] 個に分離する.
- 7. n=1 の場合は, 方位量子数は[]のみでそれを記号で[]のように表す. n=2 の場合は方位量子数は[]と[]があり前者は記号で[], 後者は[]であるが. p 軌道は磁気量子数により3 つに分離するのでそれらを[;]の記号で表す.

5. スピン量子数(spin quantum number: s)

電子は2つの方向のどちらかに自転している. 一方の自転の大きさは% \hbar , 他方は-% \hbar の角運動量を持ち, 前者を α スピン電子(α -spin electron), 後者を β スピン電子(β -spin electron)という.

ħの前の係数½ と-½ をスピン量子数という. つまり, αスピン電子は ½を, βスピン電子は-½のスピン量子数を持つ.

αスピン電子とβスピン電子では反対の磁場を発生するので、外から磁場を与えられるとそれらが相互作用してスピンの違いによりエネルギーが異なる.



問題4. 次の[]の中を適切な単語あるいは記号で埋めよ.

- 1. 電子のスピンとは電子自身の[]であり、2種ある.
- 2. 回転モーメント(回転力)の大きさは、+(1/2)ħ と-(1/2) ħ である. これらの係数(+(1/2) と-(1/2))を[]という.
- 3. また、+(1/2) と -(1/2)のスピン量子数を持つ電子を、それぞれ、 []電子および[]電子という。
- 4. 電子は[]の電荷をもつので、自転運動により磁場が生じる. そのため、外部から磁場をあたえることにより電子のスピンに由来 する磁場と相互作用し、異なる[]状態が生じる.

問題5. 次の「]の中を適切な単語あるいは記号で埋めよ.

- 1. 原子軌道はエネルギーの低い順に, 1s, [], 2p, [], 3p, [], (1s, [], 4p, ··の順に並ぶ.
- 2. p 軌道は磁場の中では[]つのエネルギー状態に分離し, d 軌道は[]つに分離する. またf 軌道は[]つに分離する.
- 3. 原子軌道に電子が入るとき, 軌道エネルギーの[・]い順に 入る. p 軌道は磁場のないところでは[]重に[]している.
- 4. 縮重している原子軌道に電子が入る場合, 電子は, 縮重した 軌道を分散して[]スピンで入り, すべての軌道が1 個の電子で埋まったら, 次に[]を逆にして入る. これを[] 則という.
- 5. 窒素原子の電子配置は[]である.

