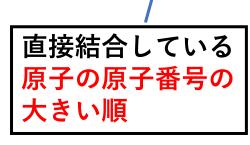
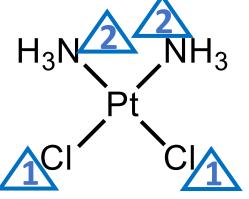
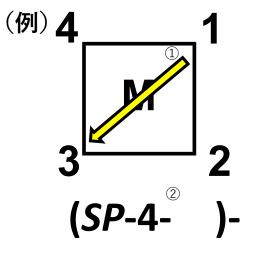
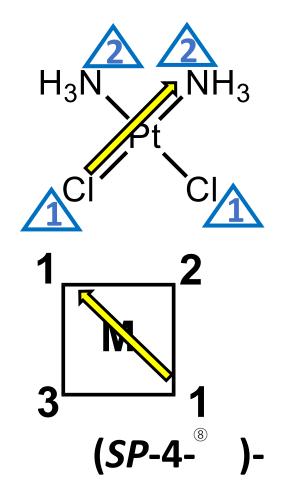

第14回(1)多面体記号


 H_3N NH_3 *cis*- diamminedicloridoplatinum (II)


Pt (SP-4-2)-diamminedicloridoplatinum (II)

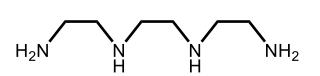

(SP-4-2)-

1. 順位法則によって結合原子の順位を決める

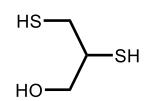


2. 順位番号の最も小さいもののトランス位にある原子の順位番号

キレート療法剤


有毒金属による中毒

無機金属医薬品の多量摂取による中毒


金属イオンとのキレート形成体外排泄を促進化させる薬剤

金属キレート剤

トリエチレンテトラミン

Cu²⁺ 除去(ウィルソン病)

ジメルカプロール

As中毒

$$HO_2C$$
 N
 CO_2H
 CO_2Na
 NaO_2C

エデト酸ナトリウム

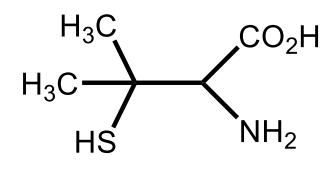
$$H_2N$$
 H_0
 H_0

デスフェリオキサミン

クーリー貧血(サラセミア)(鉄過剰症)

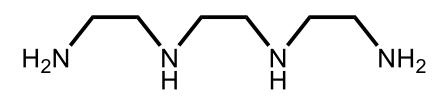
ウィルソン病

Text p.147

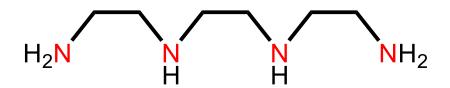

銅の代謝異常による疾患

目・肝・脳・腎などに 銅が蓄積

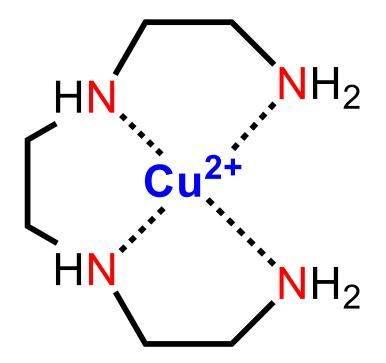
銅をキレートで除去


ペニシラミン・トリエチレンテトラミン

ペニシラミン


Cu²⁺ 除去 ウィルソン病治療薬

Text p.147


トリエチレンテトラミン

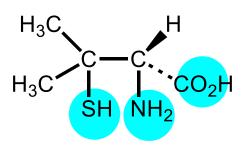
トリエチレンテトラミン

トリエチレンテトラミン

4座配位子

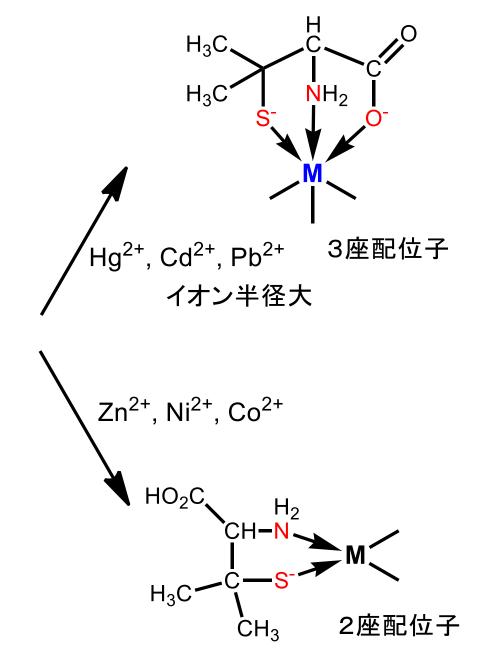
1:1の安定な錯体を形成(キレート効果)

D-ペニシラミン


$$H_3C$$
 H_3C
 $C-C$
 H_3C
 $C-C$
 CO_2H
 $SHNH_2$
 $D-^2=^{>}>^{>}>$
 D
D-penicillamine

最大三座配位子

ペニシラミンはペニシリンの 分解産物から由来するアミノ酸 であるが, 抗菌作用はない.


銅、鉄、水銀、鉛、金 などの金属をキレート化し、 尿中に排泄 される可溶性複合体を作る。

D-ペニシラミン

D-ペニシラミン

max 3座配位子

**2006年8月改訂(第5版) *2005年10月改訂

法:本剤は吸湿性のた め、気密容器に保 存すること 室温保存

使用期限:5年(ラベルに表 示の使用期限内に 使用すること)

制酸剤

日本薬局方 乾燥水酸化 アルミニウムゲル細粒 アルミゲル神社99× **ALUMIGEL**

日本標準商品分類番号	
872343	

*	承認番号	21800AMX10796
- 1	薬価収載	1976年6月
	販売開始	1964年 5 月
	再評価結果	1982年1月

2. 相互作用

併用注意 (併用に注意すること)

莱剂名等	臨床症状·措置方法	機序・危険因子
クエン酸製剤 クエン酸カリウム、 クエン酸ナトリウム 等	血中アルミニウム濃度 が上昇することがある ので、同時に服用させ ないなど注意するこ と。	キレートを形成 し、アルミニウ ムの吸収が促進 されると考えら れる。
血膚カリウム抑制イ オン交換樹脂 ポリスチレンスル ホン酸カルシウ ム、ポリスチレン スルホン酸ナトリ ウム	血清カリウム抑制イオン交換樹脂の効果が減 関するおそれがある。	アルミニウムイ オンと非選択的 に交換すると考 えられる。
189	Ì	
ペニシラミン	ペニシラミンの効果が	同時投与した場

49		
ペニシラミン	ペニシラミンの効果が	同時投与した場
	減弱するおそれがあ	合、ペニシラミ
	ŏ.	ンの吸収率が低
		下する。
Prince and A. A. Millery	Property 2 of March	04 00 to 15 to 25

Ⅰ タコフェノール酵子 Ⅰ タコフェ ノール 酵子 Ⅰ 併用により S Ⅰ

併用注意

吸収促進

吸収されては いけない金属が 吸収されてしまう 吸収阻害

本来の薬効が 発揮されない

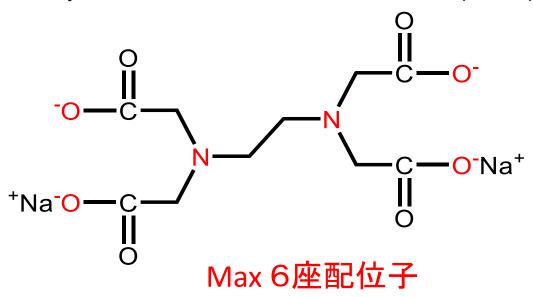
酢酸亜鉛

ウィルソン病 治療薬

 $Zn(CH_3COO)_2 \cdot 2H_2O$

ノベルジン®カプセル50mg

ノベルジン®カプセル25mg



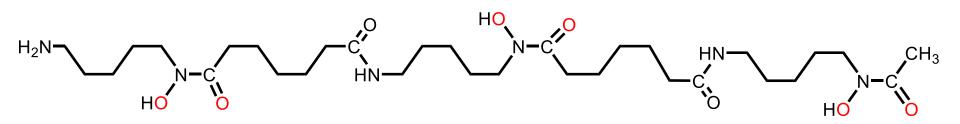
(Text p.178)

腸管細胞で金属キレート作用を持つメタロチオネインの生成を誘導し、 食物中のなどの銅を腸管粘膜上皮細胞で結合し、銅の門脈循環中へ の移行を阻害し、銅の吸収を阻害する、メタロチオネインと結合した銅 は吸収されず、糞便中に排泄される.

エデト酸ナトリウム

Ethylenediamine-*N*,*N*,*N*',*N*'-tetraacetate (EDTA)

金属イオン(特に鉛, カドミウム)の 体外排泄に有効

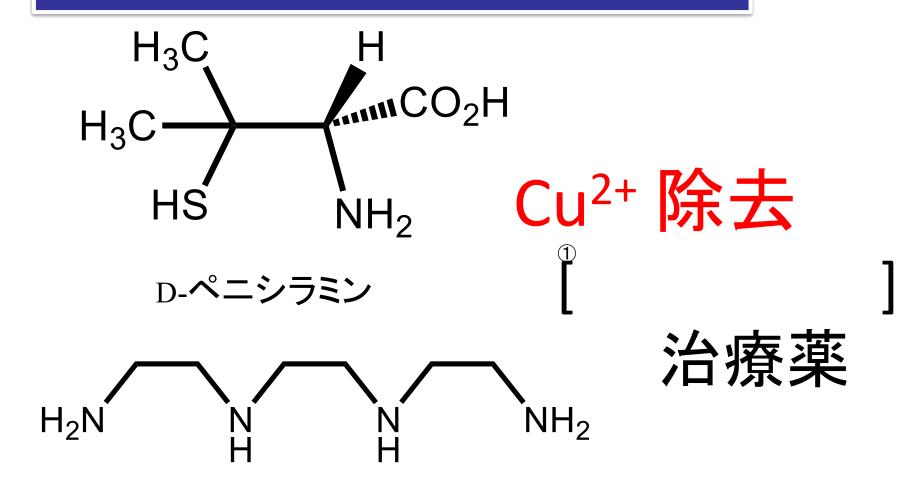

安定な水溶性錯体を形成

生体内のカルシウムイオン までも捕捉してしまう

> 親和性 Cd²⁺ > Ca²⁺

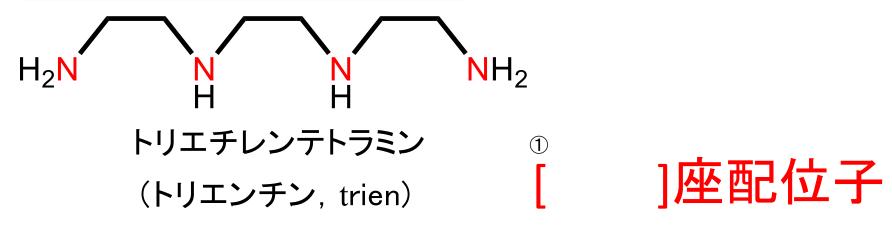
デスフェリオキサミン

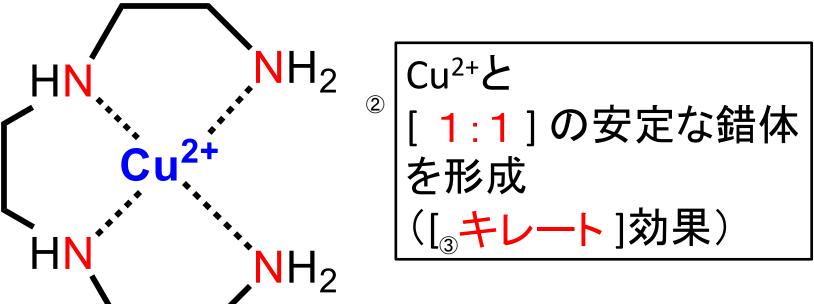
Fe³+にきわめて親和性が高い

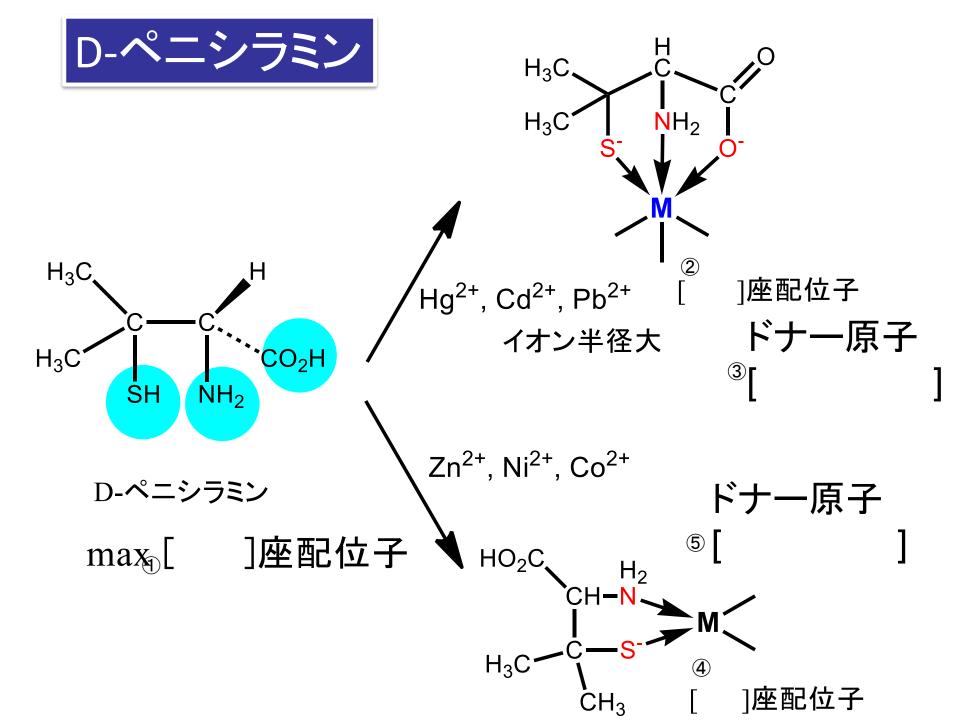


ヒドロキサム酸基

クーリー貧血(サラセミア)の治療薬


異常ヘモグロビンの産生 鉄の臓器沈着


ペニシラミン・トリエチレンテトラミン



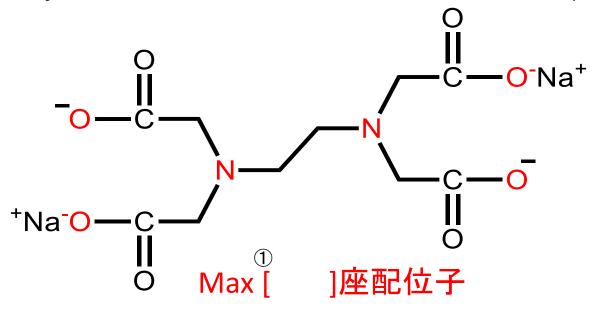
トリエチレンテトラミン

トリエチレンテトラミン

D-ペニシラミン

$$H_3C$$
 H_3C
 $C-C$
 H_3C
 $C-C$
 CO_2H
 $SHNH_2$
 $D-^2=>=>$
 D -penicillamine

最大[]座配位子


ペニシラミンはペニシリンの 分解産物から由来するアミノ酸 であるが, 抗菌作用はない.

銅、鉄、水銀、鉛、金 などの金属をキレート化し、

。 | 中に排泄 | される[| 性複合体を作る。

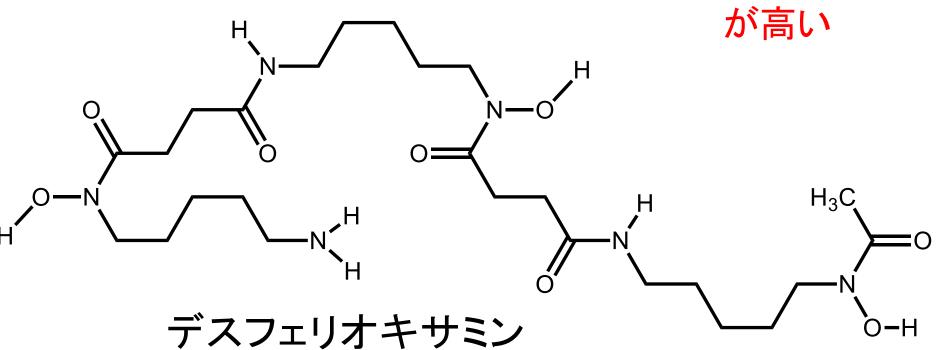
エデト酸ナトリウム

Ethylenediamine-*N*,*N*,*N*',*N*'-tetraacetate (EDTA)

])

金属イオン(特に[], [の体外排泄に有効 1

安定な[

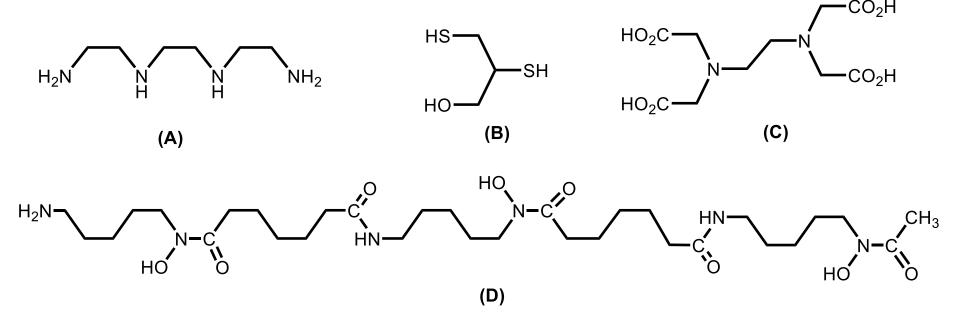

]性錯体を形成

生体内のカルシウムイオン までも捕捉してしまう

> 親和性 Cd²⁺ > Ca²⁺

デスフェリオキサミン

[]にきわめて親和性が高い

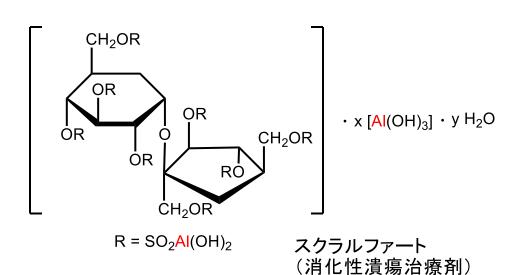


クーリー貧血(サラセミア)(鉄過剰症)

「]座配位子

次の問いに答えよ.

- (1) 鉄の過剰症であるクーリー貧血(サラセミア)の治療に用いられるキレート剤はどれか。
- (2) カドミウム中毒に用いられるキレート剤はどれか.
- (3) ヒ素中毒に用いられる化合物はどれか.
- (4) ウィルソン病に用いられるCu²⁺と1:1の安定な錯体を形成するキレート 剤はどれか.



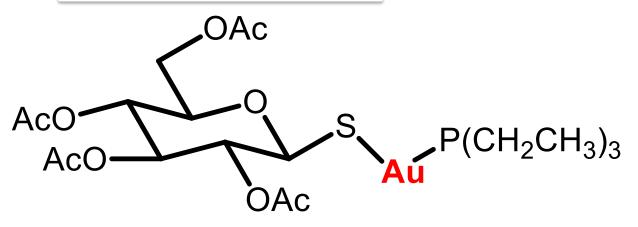
第14回(3) 金属含有医薬品

$$\begin{array}{c|c}
O & H \\
N & OAI(OH)_2 \\
H_2N & O
\end{array}$$

アルジオキサ (消化性潰瘍治療剤)

ポラプレジンク (消化性潰瘍治療剤)

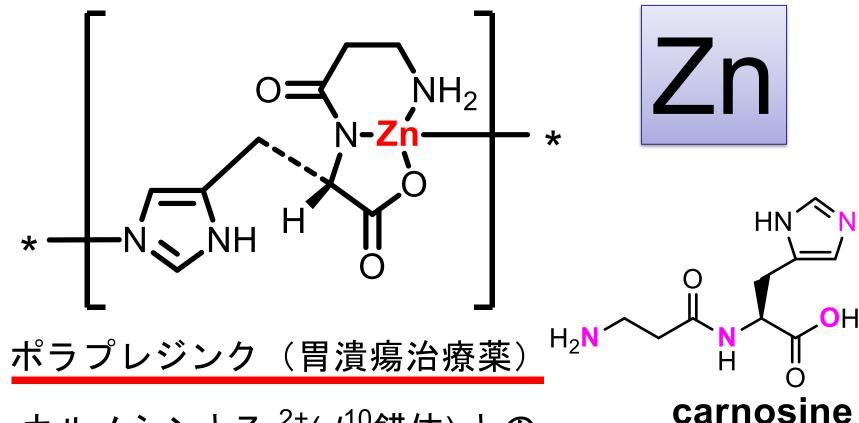
Text p.144-145


クエン酸第一鉄ナトリウム (鉄欠乏性貧血治療薬)

$$\begin{bmatrix} CH_{2}COO^{-} \\ HO-C-COO^{-} \\ CH_{2}COO^{-} \end{bmatrix} \cdot Fe^{2+} \cdot 4Na^{+}$$

フマル酸第一鉄(鉄欠乏性貧血治療薬)

Text p.187-188



オーラノフィン (リウマチ治療薬)

- 免疫機能の異常を調節して、関節などの 炎症や腫れを和らげる
- オーラノフィンは経口剤、金チオリンゴ酸ナトリウムは注射剤

$$O_2C$$
 - XNa^+ - $(2-x)H^+$

Text p.188

- カルノシンとZn²⁺(d¹⁰錯体) との4配位化合物
- 胃粘膜、潰瘍部分を覆い保護する働き

Zn: 生体の必須微量金属

創傷治癒促進作用

抗潰瘍作用

抗炎症作用など

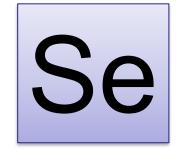
L-カルノシン:組織修復促進作用

免疫調節作用

抗炎症作用など

容易に金属とキレート結合を作る

新しい作用機序の抗潰瘍薬の創製を目指した 結果, 抗潰瘍作用および組織修復促進作用を 有し, 安全性の高い抗潰瘍剤が開発された.


Text p.140

ZnO 酸化亜鉛 (亜鉛華)

皮膚のタンパク質と結合して被膜を作り、 局所において消炎・保護作用などをもつ. 外用剤(軟膏など)

ZnSO₄ • 7H₂O 硫酸亜鉛 洗眼剤 • 点眼剤

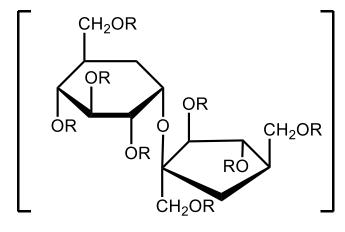

エブセレン (脳梗塞治療薬)

脳梗塞後の神経細胞障害に効果あり

-SeH

グルタチオンペルオキシダーゼ・・・グルタチオンを還元剤として 過酸化水素を還元的に分解する酵素

Text p.153



グルタチオン

Text p.189

スクラルファート(消化性潰瘍治療薬)

· x [AI(OH)₃] · y H₂O

 $R = SO_2AI(OH)_2$

アルジオキサ (消化性潰瘍治療薬)

$$\begin{array}{c|c}
O & H \\
N & OAI(OH)_2 \\
N & O
\end{array}$$

シアノコバラミン (ビタミンB₁₂)

(調節性眼精疲労 における微動調節

の改善)

バナジウム錯体・・・糖尿病治療薬

(+5, +4価)

Text p.135

バナジウムイオンの周りの 配位原子の組み合わせ		錯体の化学構造		
N ₂ S ₂		$CH_2-S = 0 COOCH_3$ $CH_2-S = 1 CH_2 - CH_2$ $CH_2-NH_2 = S - CH_2$ $CH_3-NH_2 = S - CH_3$ $CH_3-NH_2 = S - CH_3$ $CH_3-NH_2 = S - CH_3$ $CH_3-NH_3 = S - CH_3$		
S ₄		CH_2-CH_2 CH_2-CH_2 CH_2-CH_2 CH_2-CH_2 CH_2-CH_2 CH_2-CH_2	CH ₂ - CH ₂ CH ₂ - CH ₂ CH ₂ - CH ₂	
S ₂ O ₂	VO(opt) ₂ (3)			
N ₂ O ₂	VO(pa)₂ (4)	VO(6mpa) ₂ (5)	VO(5ipa)₂ (6)	

桜井弘:金属錯体による実験糖尿病の治療 薬学雑誌, 128(3), 317 (2008), 一部抜粋

生体内で金属と協調する医薬品

Text p.188

$$H_2N$$
 H_2N
 H_2N
 H_2N
 H_2N
 H_2N
 H_3
 H_4
 H_5
 H_5

放線菌より単離された 抗がん性抗生物質

- ・DNAと結合し、そのDNAを切断する機序により、細胞増殖阻害活性を示す
- DNA切断活性には鉄イオンが必須. 分子状酸素を捕捉し、活性化する. 活性 酸素種が切断に関与すると考えられている